
European Journal of Operational Research 211 (2011) 427–441
Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Invited Review

Traveling salesman problem heuristics: Leading methods, implementations
and latest advances

César Rego a,⇑, Dorabela Gamboa b, Fred Glover c, Colin Osterman a

a School of Business Administration, University of Mississippi, MS 38677, USA
b Escola Superior de Tecnologia e Gestão de Felgueiras, CIICESI, GECAD, Instituto Politécnico do Porto, Apt. 205, 4610-156 Felgueiras, Portugal
c University of Colorado, Boulder, CO 80309-0419, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 19 December 2009
Accepted 6 September 2010
Available online 21 September 2010

Keywords:
Traveling salesman problem
Heuristics
Ejection chains
Local search
0377-2217/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.ejor.2010.09.010

⇑ Corresponding author. Tel.: +1 662 915 5519.
E-mail addresses: crego@bus.olemiss.edu (C. R

(D. Gamboa), fred.glover@colorado.edu (F. Glover),
colin.j.osterman@navy.mil (C. Osterman).
Heuristics for the traveling salesman problem (TSP) have made remarkable advances in recent years. We
survey the leading methods and the special components responsible for their successful implementa-
tions, together with an experimental analysis of computational tests on a challenging and diverse set
of symmetric and asymmetric TSP benchmark problems. The foremost algorithms are represented by
two families, deriving from the Lin–Kernighan (LK) method and the stem-and-cycle (S&C) method. We
show how these families can be conveniently viewed within a common ejection chain framework which
sheds light on their similarities and differences, and gives clues about the nature of potential enhance-
ments to today’s best methods that may provide additional gains in solving large and difficult TSPs.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

The traveling salesman problem (TSP) is undoubtedly the most
extensively studied problem in combinatorial optimization. In
popular language, the TSP can be described as the problem of find-
ing a minimum distance tour of n cities, starting and ending at the
same city and visiting each other city exactly once. In spite of the
simplicity of its problem statement, the TSP is exceedingly
challenging and has inspired well over a thousand publications
devoted to analyses and algorithms attempting to solve it more
effectively.

In graph theory, the problem can be defined on a graph
G = (V,A), where V = {v1, . . . ,vn} is a set of n vertices (nodes) and
A = {(vi,vj)jvi,vj 2 V, i – j} is a set of arcs, together with a non-
negative cost (or distance) matrix C = (cij) associated with A. The
problem is considered to be symmetric (STSP) if cij = cji for all
(vi,vj) 2 A, and asymmetric (ATSP) otherwise. Elements of A are of-
ten called edges (rather than arcs) in the symmetric case. The ver-
sion of STSP in which distances satisfy the triangle inequality
(cij + cjk P cik) is the most studied special case of the problem.
The STSP (ATSP) consists in determining the Hamiltonian cycle
(circuit), often simply called a tour, of minimum cost.

The TSP is a classic NP-complete combinatorial problem, and
therefore there is no known polynomial-time algorithm (and
ll rights reserved.

ego), dgamboa@estgf.ipp.pt
costerman@bus.olemiss.edu,
unless P = NP, none exists) that is able to solve all instances of
the problem. Consequently, heuristic algorithms are used to pro-
vide solutions that are of high quality but not necessarily optimal.
The importance of identifying effective heuristics to solve large-
scale TSP problems prompted the ‘‘8th DIMACS Implementation
Challenge”, organized by Johnson et al. [21] and solely dedicated
to TSP algorithms.

In this paper we survey leading heuristics for the TSP, which
come from the families called Lin–Kernighan (LK) and stem-
and-cycle (S&C) methods, and report their computational perfor-
mances. These foremost heuristics have proven to dominate other
known approaches, solving TSP problems of vastly greater size and
difficulty than would have been imagined possible before the
advent of recent algorithmic developments. We also describe the
state-of-the-art data structures used in the implementation of
TSP algorithms, which play a key role in their efficiency.

As we demonstrate, the LK and S&C families of methods are
members of a broader class known as ejection chain (EC) methods.
Although there are several individual publications on ejection
chain approaches to the TSP, with this paper we adopt the unifying
EC perspective to give a convenient foundation for highlighting and
differentiating the key features of the best current algorithms.
Other general survey publications concerning heuristics for TSP,
such as the excellent book chapters of Johnson and McGeoch
[18,20], are no longer up to date and we include algorithms in
our analysis that are not considered in these previous treatments.
We also introduce and report computational outcomes for
additional algorithms that represent new advances for solving
problems in the ATSP class. Finally, we summarize latest

http://dx.doi.org/10.1016/j.ejor.2010.09.010
mailto:crego@bus.olemiss.edu
mailto:dgamboa@estgf.ipp.pt
mailto:fred.glover@colorado.edu
mailto:costerman@bus.olemiss.edu
mailto:colin.j.osterman@navy.mil
http://dx.doi.org/10.1016/j.ejor.2010.09.010
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

428 C. Rego et al. / European Journal of Operational Research 211 (2011) 427–441
developments in data structures that are providing greater effi-
ciencies in solving TSP problems.

Taking advantage of the ejection chain perspective, the follow-
ing sections provide a brief survey of the most prominent algo-
rithms for the TSP and discuss their salient performance
characteristics, together with a summary of computational results
that demonstrate the remarkable efficacy of these methods.

2. Ejection chain fundamentals

In the general context of combinatorial optimization, ejection
chains are constructions to create variable-depth neighborhoods
efficiently for local search procedures. The underlying technique
consists of decomposing a very large neighborhood into a sequence
of component neighborhood structures that can be evaluated in
polynomial-time. Each component neighborhood structure in the
sequence does not usually correspond to a feasible solution but
constitutes a reference structure that permits a feasible solution
to be obtained efficiently.

More advanced EC variants are typically based on specialized
decision rules that adaptively take the search to promising regions
of the solution space. In this paper, we specifically refer to ejection
chains defined on graph structures relevant to the TSP setting.

2.1. Graph theory representation

We briefly overview the nature of an ejection chain process on a
graph, as a foundation for a more specific description relative to
the TSP problem. An ejection chain of L levels on a graph G consists
of a sequence of simple operations, called ejection moves,
he1, . . . ,em, . . . ,eLi, that iteratively transform a subgraph Gm of G into
another subgraph Gm+1 by disconnecting a subpath and reconnect-
ing it with different components. At each level of the chain the sub-
graph composing the reference structure leads to a feasible
solution via an extra operation called a trial move. Therefore, a
neighborhood search ejection chain procedure consists in generat-
ing a sequence he1, t1, . . . ,em, tm, . . . ,eL, tLi, where hem, tmi represents
the paired ejection and trial moves at level m of the chain. The
new solution that constitutes the starting point of the next itera-
tion is obtained from the compound move he1,e2, . . . ,em, tmi, where
the subscript m identifies the chain level that produced the best
trial solution. Such a sequence can be efficiently evaluated by a
simple recursive process. An extensive description of ejection
chain methods for the TSP can be found in [33], and a recent survey
of ejection chain methods and applications to other combinatorial
optimization problems can be found in [34]. See also [30] for addi-
tional applications.

2.2. TSP ejection chains

In the TSP setting, the EC framework provides a hierarchy of
four types of reference structures: (1) a detached stem (or chain)
structure; (2) a stem-and-cycle structure; (3) a doubly-rooted
stem-and-cycle structure; (4) a multi-cycle structure. Only the first
two of these (the detached stem and the stem-and-cycle) have
been extensively studied in the symmetric TSP setting, and only
an intermediate variant along with modified instances of the sec-
ond and third structures have been studied (much less extensively)
in the asymmetric TSP setting. Consequently, there is a possibility
that an exploration of elements of the ejection chain framework
so-far unexamined may yield additional advances. We will not
examine the issues surrounding these unexamined variants, but
instead focus on the details of the widely-studied structures and
the accompanying strategic devices that have produced their most
effective implementations.
The detached stem procedure, which is better known as the
Lin–Kernighan (LK) method [23], is far and away the most thor-
oughly investigated of the EC approaches for the TSP, and has been
fortified and supplemented over the years with special auxiliary
schemes to enhance its performance. Until the recent emergence
of the stem-and-cycle (S&C) approach, the ‘‘name of the game” in
TSP algorithmic development has largely consisted of efforts to
find ever more subtle and ingenious ways to coax out another
increment of speed or solution quality from implementations of
the LK approach. Now, as will be seen, the game has acquired a
new dimension, as the stem-and-cycle method has been found to
match or surpass the best results of the LK approach without
including several of the supporting techniques that have contrib-
uted to the LK successes. This raises the question for future study
concerning whether the auxiliary strategies that will provide the
greatest enhancements for the S&C approach will turn out to have
a different character than those used to enhance the LK method.
Currently, this is a realm for speculation, and no real answers are
known.

An interesting discovery that surfaced from the EC framework is
a relationship between the LK and S&C methods that binds them to
specialized graph theory algorithms for certain problems of poly-
nomial complexity. In particular, the operations of the LK approach
result in generating classical alternating paths, having the same
structure (though derived from different mechanisms) as the alter-
nating paths implicitly and explicitly exploited by well known net-
work assignment algorithms and matroid intersection algorithms.
The S&C approach also generates alternating paths, but of a more
general class that is not considered by the classical graph theory
constructions. Over the subclass that consists of ordinary alternat-
ing paths, the S&C method additionally generates instances that
are not accessible to the LK method.

These and other similarities and differences between these
two fundamental EC methods will be elaborated in the next
sections.

3. Symmetric TSP

We first summarize the main components of the most effective
instances of the LK and S&C algorithms for the symmetric TSP and
analyze their performance. The basic difference between these two
methods derives from the difference between their reference
structures. The detached stem reference structure of the LK meth-
od is a Hamiltonian path (arising by dropping an edge of the TSP
tour), while the S&C reference structure consists of a node simple
cycle attached to a path. In each case, the reference structures
include all nodes of the graph. An interesting theoretical analysis
of the differences between the types of paths generated by S&C
and LK procedures, disclosing properties of the increased range
of solutions accessible to the S&C approach, is provided in Funke
et al. [10].

In the following, we first describe leading variants of the LK
method, and then follow with a description of the S&C method
and its performance characteristics.

3.1. The LK method and its variants

The Lin–Kernighan neighborhood search is designed as a meth-
od to generate k-opt moves (which consist in deleting k edges and
inserting k new edges) in a structured manner that provides access
to a relevant subset of these moves by an efficient expenditure of
computational effort. The approach is based on the fact that any
k-opt move can be constructed as a sequence of 2-opt moves [6],
and a restricted subset of those move sequences can be produced
in a systematic and economic fashion.

C. Rego et al. / European Journal of Operational Research 211 (2011) 427–441 429
The method starts by generating a low order k-opt move (with
k 6 4) and then creates a Hamiltonian path by deleting an edge adja-
cent to the last one added. This path provides the first k � 1 levels of
the ejection chain used by the LK process. Fig. 1 illustrates the three
types of starting moves for initiating the LK ejection chain proce-
dure (i.e. 2-, 3-, and 4-opt moves). The node sequence ht1, t2, . . . , tLi
identifies the succession of add-drop operations used in the ejection
move and correspondingly indicates the order that nodes have been
selected. Dotted lines show edges that are dropped from the original
tour, and solid lines cutting across the ‘‘interior” of the tour (in the
layout of the diagram) show new edges that are added to the tour.
In each case, the resulting structure of solid lines is a Hamiltonian
path from which the associated k-opt move can be obtained by
linking the highest indexed t node to the initial node t1.

At succeeding levels each new move consists of adding an edge
to the node that was met by the last edge deleted (the ‘‘opposite
end” of the path of solid lines starting from t1, represented by
the highest indexed t node) and dropping the unique resulting
edge that again will recover a Hamiltonian path. This type of ejec-
tion move is also available at levels 2 and 3 of the ejection chain
illustrated above as inherent options to generate 3-opt and 4-opt
moves, respectively.

Additional sophistication of the basic method is provided by a
backtracking process that allows testing different alternatives for
2-, 3-, and 4-opt moves that derive from the same base node t1

(as illustrated in Fig. 1) and then proceeding iteratively until reach-
ing level L.

3.1.1. Johnson and McGeoch Lin–Kernighan (LK–JM)
The LK implementation of Johnson and McGeoch [19] is featured

among the lead papers of the ‘‘8th DIMACS Implementation Chal-
lenge” [21]. The results reported for this implementation use four
supplementary components to enhance the method’s efficacy: gree-
dy initial solutions, the k-quadrant neighbor list [26] with k = 20, the
don’t-look-bits strategy [4], and the 2-level tree data structure [7].
We provide an abbreviated description of each of these algorithmic
components to give an indication of their nature. To provide a com-
plete tabulation, we also list the two auxiliary strategies embodied
in the original LK proposal, and one additional strategy that is also
incorporated into all of the best LK implementations.
(1) The Greedy heuristic (aka multi-fragment heuristic [4]) is a con-
structive algorithm that creates a tour from scratch by adding at
each step the shortest valid edge among those not already
included in the tour being constructed-where an edge is consid-
ered valid if it does not create a degree-3 node and hence pro-
duces a subtour (i.e. a cycle of length less than n).

(2) The k-quadrant neighbor list is a device for restricting attention
to a subset of the edges of the graph as candidates for edges
that may be incorporated into the alternating path and hence
Fig. 1. Possible moves at the first level of th
become edges of a new tour produced by an ejection chain
move. The list provides an alternative to the k-nearest neighbor
list classically used for this purpose, and operates by choosing
the k neighbors of a node evenly from each quadrant of a 2-
dimensional Euclidian plane that takes the indicated node as
its origin. If not enough neighbors are found in some quadrant,
then the list is completed by adding the nearest neighbors not
already included.

(3) The don’t-look-bits strategy is a special type of adaptive memory
technique used to restrict the neighborhood space (by limiting
the choices for a LK base node t1) and to help guide the search
to regions of the problem graph where further improvements
are more likely to be found. This is done by associating a binary
variable (or flag) with each node, where the bit for a node is
turned off or on, respectively, to indicate that the node is
permitted, or not permitted, to serve as a base node to start an
ejection chain. A bit for a node is turned on (to prevent its selec-
tion as a base node) the first time the selection of this node does
not produce an improving move. Conversely, it is turned off (to
permit its selection as a base node) when one of its adjacent
nodes is used as a base node that produces an improving move.
(According to the personal communication revealed by Neto
[27] the strategy is implemented by keeping an active list of
turned-off nodes organized in a first-in-first-out queue, which
supports constant time membership test and update, somewhat
similar to the sparse set representation described in [5].)

(4) The 2-level tree is a specialized data structure to represent
tours in TSP local search algorithms in order to update the tour
structure efficiently. In particular, the implementation of the
neighborhood structure often requires reversing the recorded
sequence of a tour subpath in order to allow the nodes of the
tour to be listed sequentially. For example, closing the 2-opt
move of Fig. 1 (by linking t4 to the base node t1) requires
reversing the subpath from t2 to t4. Because these subpaths
can be very long in large TSP graphs, path reversal operations
are computationally expensive. Due to its practical efficiency,
the 2-level tree became a standard data structure in the imple-
mentation of LK algorithms, and likewise has been used with
other types of ejection chain methods as will be discussed later.
Finally, we conclude the tabulation by listing the auxiliary strat-
egies previously mentioned that come from the original LK pro-
posal and the special strategy more recently used by the best
methods to overcome a limitation subsequently identified in
the LK method.

(5) The backtracking method.
(6) The implicit k-opt moves for k = 2, 3 and 4.
(7) The double-bridge kick moves (discussed later).

In addition to these components, the Johnson and McGeogh
implementation incorporates the legitimacy restrictions introduced
e Lin–Kernighan ejection chain method.

430 C. Rego et al. / European Journal of Operational Research 211 (2011) 427–441
by Lin and Kernighan which constitute a guiding mechanism that
limits the moves permitted to be generated throughout the
ejection chain process. These restrictions have the result of main-
taining a classical (static) alternating path neighborhood structure
by preventing the method from deleting an edge that has been
newly added during the construction of the current ejection chain.
This restriction implicitly bounds the ejection chain length L to n
levels, but Johnson and McGeogh additionally found it useful to
stop the search at level 50. Following the original proposal,
backtracking (item (5) above) is also used any time an ejection
chain fails to produce an improved solution, in which case all
alternatives for t2 to t6 are tested, but limiting consideration for
each of them to examining only one possible alternative for the
pair (t7, t8).

The champion version of the Johnson and McGeogh implemen-
tation (with respect to solution quality) is the chained (or iterated)
Lin–Kernighan algorithm (ILK), which extends the basic version
with a perturbation mechanism and the use of multiple starts.
Instead of terminating the basic algorithm upon reaching a LK local
optimum, the iterated method looks for an improving double-
bridge move (item (7) above), and if one is found a new LK search
is launched from this improved solution. In this implementation,
double-bridge moves to be examined are generated at random
over the entire set of nodes in the graph. If the move generated
does not improve the current best tour, the move is not applied
and a new double-bridge move is attempted. This process is
repeated for as many iterations as desired.

The structure of the double-bridge move derives from a special
4-opt neighborhood where edges added and dropped need not be
successively adjacent, thus overcoming the potential limitation of
the LK method which imposes such a successive adjacency require-
ment. As shown in Fig. 2, this move consists of a sequence of two
disconnected 2-exchange moves and does not entail subpath
reversals. The first exchange deletes edges (v1,v2), (w1,w2) and
links their endpoints by adding edges (v1,w2), (w1,v2), which
results in two subtours. The second exchange deletes edges
(w3,w4), (w5,w6) and adds edges (w3,w6), (w5,w4) to create a feasi-
ble tour. Each ILK iteration initializes the don’t-look-bits active list
with the eight nodes involved in the improving double-bridge
move, as suggested by Martin et al. [24,25].

In what follows, we will indicate the primary algorithms that
incorporate one or more of these strategies in their design, includ-
ing the best algorithms as determined by the 8th DIMACS Imple-
mentation Challenge. We also describe new algorithms that
incorporate more innovative structures and that achieve the
highest levels of performance among the methods now available.

3.1.2. Neto’s Lin–Kernighan (LK–N)
This implementation, described in [27], differs from the LK–JM

implementation primarily in its incorporation of special cluster
Fig. 2. The double-bridge neighborhood structure.
compensation routines. In general, problems in which nodes are
not uniformly distributed but may clump and cluster pose a chal-
lenge to the classical LK heuristic. The reason conjectured for this
LK weakness is that once an edge that links two distinct clusters is
deleted, the search for new Hamiltonian paths tends to focus on
nodes in the particular cluster that contains the new ‘‘end node” of
the path under construction. It has been found that adding an edge
that links distant clusters, coupled with dropping an edge in one of
these clusters, is likely to produce a significant gain. The opposite
result is found when the two ends of the Hamiltonian path (lying
in different clusters) have to be connected to produce a new tour.
Therefore, Neto’s strategy consists of altering the neighborhood
evaluation function so that the potential harm of the cross-cluster
linking move in the LK procedure is not completely ignored, keeping
the search from getting too greedy in choosing the move that links to
the best neighboring solution at each level of the ejection chain. In-
stead of choosing the reference structure that gives the lowest cost
ejection move or the one that gives the best tour from the associated
trial solution, the move evaluation is adjusted to incorporate an aux-
iliary term that reflects the magnitude of the costs of the linking
move expected to be encountered in further levels of the chain. This
term is defined by the cost of the shortest edge in the set that
contains the longest edge of any path linking the two nodes under
consideration. This cost is efficiently obtained by observing that
the required edge corresponds to the longest edge of the unique path
linking the two nodes in the minimum spanning tree of the underly-
ing graph G. Hence, the task is reduced to computing a minimum
spanning tree and then efficiently computing the longest edge
between pairs of nodes in the tree.

Once a minimum spanning tree is constructed the query for the
longest edge between two nodes can be answered in constant time
[16] by finding the least common ancestor of the two nodes in the
binary tree representation of the spanning tree. On the flip side this
operation adds to the algorithm a preprocessing time bounded by
O(n logn) as well as O(n) extra space for data structures. However,
results reported in [27] show improvements produced by the clus-
ter compensation technique that significantly outweigh its over-
head. In these experiments, Neto reports savings of 50–100% in
running times without compromising solution quality. Although
this advantage is more prevalent in clustered instances the tech-
nique also proved effective with uniformly structured instances
when embedded in an Iterative LK implementation, finding solu-
tions of similar quality and sometimes better in shorter running
times. In sum, Neto’s LK implementation with cluster compensa-
tion is superior to its classical counterpart that does not incorpo-
rate the strategy. The other aspects of the code are similar to
that of LK–JM implementation [19] discussed above, except that
it aggregates 20 quadrant neighbors and 20 nearest neighbors into
a single candidate list.

3.1.3. Applegate, Bixby, Chvatal, and Cook Lin–Kernighan (LK–ABCC)
This implementation is part of the Concorde library [1] and is

based on [2]. It uses Q-Boruvka starting tours, 12-quadrant neigh-
bor candidate lists, the don’t-look-bits technique, and the 2-level
tree data structure. LK–ABCC bounds the LK searches by 50 moves,
and the backtracking technique is slightly deeper than that of the
LK–JM implementation. The don’t-look-bits strategy is imple-
mented using first-in-first-out priority queue similar to that used
in the codes described above.

A number of subtleties of this code deserve consideration. In-
stead of selecting double-bridge moves randomly as in the previ-
ously discussed approaches, the authors developed two different
types of cost-restricted double-bridge moves called close kick and
geometric kick. For what follows we refer to the double-bridge dia-
grams of Fig. 2. Both variants of the kicking strategies start with the
selection of a node v1 that is locally optimum among a small

C. Rego et al. / European Journal of Operational Research 211 (2011) 427–441 431
number r of randomly generated nodes (e.g. 0.003n 6 r 6 0.03n).
The local optimality criterion is the one that minimizes the cost
of a hypothetic partial move that adds an arc (v1,w2) and deletes
the arc (v1,v2), where v2 is the successor of v1 in the current orien-
tation of the tour and the w2 is the nearest neighbor of v1. Once v1

has been selected, the close kicking strategy finds the 4-opt dou-
ble-bridge move by selecting edges (w1,w2), (w3,w4), and (w5,w6)
in a restricted neighborhood where nodes w2i�1 (i = 1,2,3) must
be among the six nearest neighbors of v1. (Note that the initial
node w2 used in the selection of v1 is not necessarily part of the
best double-bridge move found in the restricted neighborhood.)
The geometric kick changes the restricted neighborhood by allow-
ing the w2i�1 nodes to be selected at random among the k-nearest
neighbors of v1. In the computational analysis reported in [33] the
authors conclude that while geometric kicks outperform the gen-
eral random kicks for instances having more than 10,000 nodes,
the random kicks are usually preferable for the smaller instances.
Therefore, the algorithm switches between random and geometric
kicks depending on the problem size.

3.1.4. Applegate, Cook and Rohe Lin–Kernighan (LK–ACR)
The implementation of this method is very similar to that of the

preceding LK–ABCC approach, but the backtracking strategy is
even deeper and broader. The depth of the LK searches, by contrast,
is half that of the LK–ABCC approach (25 moves). This implemen-
tation is based on the design reported in [2,3]. The main new ingre-
dient seems to be the introduction of a new method to generate
restricted double-bridge moves called random-walk kick. The
method consists of three random walks from v1 in the 12-quadrant
neighbor graph where nodes w2i�1 are those reached in a walk i for
i = 1,2,3. This perturbation procedure can be executed much faster
than the geometric kicks used in LK-ABCC, especially for general
(non-geometric) instances; hence it is adopted for the solution of
the largest instances involving several millions of nodes.

3.1.5. Helsgaun’s Lin–Kernighan variant (LK–H)
This implementation, described in [17], modifies several aspects

of the original Lin–Kernighan heuristic. The most notable
difference is found in the search strategy. The algorithm uses larger
(and more complex) search steps than the original procedure. Also,
sensitivity analysis is used to direct and restrict the search. The
algorithm does not employ backtracking, but uses the don’t-
look-bits technique and the 2-level tree data structure.

LK–H is based on 5-opt moves restricted by carefully chosen
candidate sets. Helsgaun’s method for creating candidate sets
may be the most valuable contribution of the algorithm. The rule
in the original algorithm restricts the inclusion of links in the tour
to the five nearest neighbors of a given city. LK–JM includes at least
20 nearest quadrant neighbors. Helsgaun points out that edges
selected simply on the basis of length may not have the highest
probability of appearing in an optimal solution. Another problem
with the original type of candidate set is that the candidate
subgraph need not be connected even when a large fraction of all
edges is included. This is the case for geometrical problems in
which the point sets exhibit clusters.

Helsgaun therefore develops the concept of an a-nearness
measure that is based on sensitivity analysis of minimum spanning
1-trees. This measure tries to better reflect the probability that an
edge will appear in an optimal solution. It also handles the connec-
tivity problem, since a minimum spanning tree is (by definition)
always connected. The key idea, in brief, is to assign a value to each
edge based on the length of a minimum 1-tree containing it. A can-
didate set of edges can then be chosen for each city by selecting
edges with the lowest values. The effectiveness of a-nearness in
selecting promising edges can be further improved by transform-
ing the graph. For this, a subgradient optimization method is
utilized that strives toward obtaining graphs in which minimum
1-trees are close to being tours.

By using the a-measure, the cardinality of the candidate set
may generally be small without reducing the algorithm’s ability
to find short tours. In fact, Helsgaun claims that for his initial set
of test problems, the algorithm was able to find optimal tours using
as candidate edges the 5 a-nearest edges incident to each node.

3.1.6. Nguyen, Yoshihara, Yamamori and Yasunaga Lin–Kernighan
variant (LK–NYYY)

A short description of this implementation can be found in [21].
This variant starts with a 5-opt move but uses 3-opt moves in the
LK searches as opposed to the LK–H approach that uses 5-opt as a
basic move. The LK–NYYY variant also uses the don’t-look-bits
technique, greedy starting solutions, and 12-quadrant neighbor
lists, but uses a data structure with properties similar to segment
trees [9]. The results reported from this algorithm were submitted
to the DIMACS Challenge after the summary chapter [21] was fin-
ished. A highly significant difference from the Helsgaun variant is
that LK–NYYY is able to run instances up to 1,000,000 nodes
whereas LK–H only manages instances up to 85,900 nodes and
consumes a significant amount of computational time as is evident
in Table 4.

3.2. Stem-and-cycle implementations

Because of its relatively recent emergence on the scene, by com-
parison to the LK procedure, the stem-and-cycle method has to
date been embodied in only two different implementations. A first
attempt was independently conducted by Pesch and Glover [31]
and Rego [32], the latter incorporating aspects to improve effi-
ciency. An updated version of Rego’s implementation was later
undertaken by Gamboa et al. [11,12]. We describe the fundamental
ideas underlying the two more effective versions and then describe
their details and the way that they differ.

3.2.1. Rego, Glover and Gamboa stem-and-cycle (S&C-RGG)
The S&C-RGG algorithm implements an ejection chain method

that differs from the LK procedure in several key ways, which chiefly
derive from the differences in the reference structure employed by
the two methods. The Hamiltonian path reference structure used
by the LK approach is very close to being a valid TSP solution (only
requiring the single edge to be added that ‘‘closes” the path to pro-
duce a tour). As a result, the structure implicitly limits the types of
moves it can generate. At the next rung above the LK reference struc-
ture in the ejection chain hierarchy, the S&C reference structure is
able to generate moves that the LK structure cannot.

Drawing on the characterization of the stem-and-cycle struc-
ture proposed by Glover in [13], the implementation reported here
was designed by Rego [32] and subsequently enhanced by Gamboa
et al. [11,12]. The S&C reference structure is a spanning subgraph of
G consisting of a path called a stem ST = (vt, . . . ,vr) connected to a
cycle CY ¼ ðvr ;v s1 ; . . . ;v s2 ; vrÞ. A diagram of this reference struc-
ture is given in Fig. 3. The vertex vr shared by the stem and the
cycle is called the root, and the two vertices of the cycle adjacent
to vr are called subroots. Vertex vt, which terminates the stem (at
the opposite extremity from the root vr), is called the tip of the stem.

The S&C method creates its initial reference structure from a
TSP tour, by adding a non-tour edge to link two non-adjacent
nodes of the tour and then removing one of the two tour edges
adjacent to the added edge. As shown in Fig. 3, ejection moves
are carried out within this reference structure by adding an edge
to join the tip node vt to any other node vp of the graph except
for the unique node adjacent to the tip. Two different ejection
moves are possible depending whether vp lies on the stem or on
the part of the cycle that excludes the root vr. The former situation

Fig. 3. The stem-and-cycle structure and ejection moves.

432 C. Rego et al. / European Journal of Operational Research 211 (2011) 427–441
gives rise to a stem-ejection move and the latter gives rise to a cycle-
ejection move. Trial solutions yielding valid TSP tours are obtained
by adding an edge ðv t ;v si

Þ linking the current tip vt to one of the
subroots vsi

ði 2 f1;2gÞ and deleting the adjacent edge ðv si
;v rÞ.

The results reported here come from the updated version of the
S&C implementation, and improve upon those for the S&C method
reported in the DIMACS challenge by incorporating changes out-
lined in [12] and by adding a variant of the don’t-look-bits strategy.
We present results using greedy initial solutions, 12-quadrant
neighbor candidate lists concatenated with a list generated by
the construction of Delaunay triangulations and the 2-level tree
data structure. In its present form the algorithm executes a local
search procedure without resorting either to the backtracking
strategy or the double-bridge kick strategy, as incorporated into
the best LK implementations. Similarly, no recourse is made to
the implicit k-opt moves (k = 2,3,4) that are used in these best
implementations, although such moves arise as natural options
within the first levels of the ejection chain generated by the S&C
algorithm.

Because of the differences between the LK and S&C reference
structures, the node structure of the 2-level tree (used to update
the tour representation) must be slightly modified to efficiently
accommodate the peculiarities of the S&C structure. In addition,
specialized requirements are incorporated in the organization
and content of the data segments of the S&C structure in order to
facilitate the execution of each type of ejection move and its asso-
ciated trial moves. A comprehensive description of the necessary
operations to manipulate the 2-level tree data structure for the
S&C ejection chain are given in [9].

In summary, apart from the fact that our implementation of the
S&C method has excluded three of the strategies used to support
the leading LK implementations, the essential differences between
the two methods reside in the types of trial moves and trial solu-
tions available at each step.

3.3. Comparative analysis of performance

We now evaluate the performance of the heuristic algorithms
referenced above using the results obtained for the ‘‘8th DIMACS
Implementation Challenge” [21] (submitted during and after the
conference was held), together with the updated results for S&C-
RGG. We restrict attention to the evaluation of the results reported
for the algorithms relevant to this paper’s main focus, hence do not
include results for methods that did not perform at a competitive
level. A complete list of algorithm results and other information re-
lated to the generation of the testbed instances, the scale factors to
compare running times for different computer systems, and other
characteristics of the challenge can be found on the Challenge web
site [21].

The Challenge testbed consists of three sets of instances: uni-
formly distributed problems (sizes between 1000 and 10,000,000
nodes), clustered problems (sizes between 1000 and 316,228
nodes), and those from the TSP Library [35] with at least 1000
nodes. In the current study we limited the number of problems
to instances up to 3,000,000 nodes.

A benchmark code was provided for Challenge participants that
was run on the same machines used to run the competing algo-
rithms of the participants, in order to obtain a more accurate com-
parison of running times. The tests for the updated version of S&C
have been run on the same machine used to run the first S&C ver-
sion for the DIMACS Challenge, and the same scale factor has been
used to normalize the new implementation running times. An
exception was made for the 3 million-node problem whose results
were obtained on a Dual Intel Xeon, 3.06 GHz with 2 GB of mem-
ory. A scale factor of 2.89 was used to compute our normalized
time for this problem.

Tables 1–4 summarize the results of the aforementioned algo-
rithms. The values presented are averages of solution quality and
computational times (in seconds), where instances are grouped
by size. This grouping is similar to the one used by Johnson and
McGeoch [20] to design the tables of results in their book chapter
summarizing the Challenge’s submissions. Again it is important to
stress that a number of algorithms and results described here were
submitted or updated after the chapter was published. In the solu-
tion quality tables, in addition to reporting average percentage
excess over the optimal solution or over the Held-and-Karp lower
bound, we present the number of best solutions (NBS) found by
each algorithm, i.e., the number of problem instances for which
the associated algorithm obtained a solution of higher quality than
other algorithms. We utilize the notation xjy to signify that the
associated algorithm found x better solutions than all other algo-
rithms (excluding S&C-RGG+ from the comparison) and y better
solutions than all other algorithms (excluding S&C-RGG from the
comparison) in the corresponding group of problems. To facilitate
the analysis of the tables, we replace zeros with dashes and like-
wise for cases where x = y we use only a single number to avoid
repetition. For example, Figs. 1,2 for LK–JM in the group 1000/10
indicate that this algorithm found one better solution than all
the others (excluding S&C-RGG+) and two better solutions than
all the others (excluding S&C-RGG). Accordingly, when either
S&C-RGG or S&C-RGG+ are considered in the analysis, we see that
each of them finds seven and five better solutions than all other
algorithms, respectively. The values in bold in the tables indicate
the best averages.

We separate the basic LK algorithmic variants and the S&C ap-
proach from the two ‘‘iterated” LK variants since the latter employ
an extended set of auxiliary strategies and consume considerably
greater amounts of computation time as a result of switching back
and forth between these strategies and the basic LK routine, conse-
quently placing them in a different category of method. The basic
LK variants and the S&C method alike determine moves by deleting
one edge and inserting another one, completing the 2-exchange
with a trial move. The NYYY and Helsgaun variants additionally
search for valid 3-exchange and 5-exchange moves. To make this

Table 1
Basic LK and S&C – solution quality.

Problem size/number of instances – 25 uniformly distributed problems
1000/10 3162/5 10000/3 31623/2 100000/2 316228/1 1000000/1 3000000/1 Total

Algorithm % NBS % NBS % NBS % NBS % NBS % NBS % NBS % NBS Average NBS

LK–JM 1.18 1j2 1.27 1j2 2.02 – 2.02 – 1.97 – 1.96 – 1.96 – 1.92 – 1.79 2j4
LK–N 1.17 –j2 1.26 – 1.99 – 1.88 – 1.95 – 1.97 – 1.92 – 1.878 – 1.75 –j2
LK–ABCC 1.47 2j1 1.71 – 2.60 – 2.48 – 2.54 – 2.67 – 2.68 – 2.55 – 2.34 2j1
LK–ACR 1.61 – 2.18 – 2.72 – 2.72 – 2.74 – 2.75 – 2.77 – 2.67 – 2.52 –
S&C-RGG 0.79 7 0.95 4 1.68 3 1.61 2 1.65 2 1.86 1 1.91 1 – – 1.49 20
S&C-RGG+ 0.93 5 0.98 3 1.55 3 1.66 2 1.72 2 1.84 1 1.90 1 1.875 1 1.56 17 + 1

Problem size/number of instances – 23 clustered problems
1000/10 3162/5 10000/3 31623/2 100000/2 316228/1 Total

Algorithm % NBS % NBS % NBS % NBS % NBS % NBS Average NBS

LK–JM 1.21 6 2.32 4j2 3.41 2 3.72 – 3.63 1j2 3.67 1 2.99 14j13
LK–N 1.97 1 3.55 – 4.76 – 4.42 – 4.78 – – – 3.90 1
LK-ABCC 3.22 – 5.58 – 5.70 – 6.38 – 5.31 – 5.45 – 5.27 0
LK-ACR 3.34 – 5.48 – 5.92 – 6.28 – 5.55 – 5.54 – 5.35 0
S&C-RGG 1.35 3 2.57 1 3.24 1 3.16 2 3.69 1 3.99 – 3.00 8
S&C-RGG+ 1.79 3 2.24 3 3.27 1 3.29 2 3.72 – 3.81 – 3.02 9

Problem size/number of instances – 11 TSPLIB problems
1000/4 3162/3 10000/2 31623/1 100000/1 Total

Algorithm % NBS % NBS % NBS % NBS % NBS Average NBS

LK–JM 1.40 – 1.28 – 1.38 – 1.23 – 1.213 – 1.30 –
LK–N 1.43 – 1.44 – 1.34 – 1.49 – – – 1.43 –
LK–ABCC 2.56 – 2.41 – 1.86 – 1.65 – 1.208 –j1 1.94 –j1
LK–ACR 3.49 – 2.59 – 3.17 – 2.40 – 2.00 – 2.73 –
S&C-RGG 0.52 4 0.60 3 0.91 2 1.02 1 1.17 1 0.84 11
S&C-RGG+ 0.89 4 0.79 3 0.94 2 1.21 1 1.57 – 1.08 10

Table 2
Basic LK and S&C – computational time.

Problem size/number of instances – 25 uniformly distributed problems
1000/10 3162/5 10000/3 31623/2 100000/2 316228/1 1000000/1 3000000/1

Algorithm CPU CPU CPU CPU CPU CPU CPU CPU

LK–JM 0.16 0.53 1.77 6.81 27.74 108.87 493.42 2049.28
LK–N 0.19 0.87 3.35 14.40 89.58 574.42 3577.74 17660.51
LK–ABCC 0.09 0.34 1.49 5.95 21.43 60.79 307.17 1332.79
LK–ACR 0.07 0.29 0.93 2.95 16.40 76.32 318.10 1289.25
S&C-RGG 4.04 19.82 100.92 733.93 5804.09 33239.39 255971.44 –
S&C-RGG+ 2.95 13.49 80.88 313.11 2872.61 13584.87 69542.57 336304.79

Problem size/number of instances – 23 clustered problems
1000/10 3162/5 10000/3 31623/2 100000/2 316228/1

Algorithm CPU CPU CPU CPU CPU CPU

LK–JM 1.30 3.62 11.99 57.65 211.30 916.91
LK–N 4.35 15.04 51.17 138.59 558.07 –
LK–ABCC 0.20 0.72 2.55 11.04 37.91 107.67
LK–ACR 0.11 0.45 1.40 4.49 24.97 114.19
S&C-RGG 4.17 18.41 135.12 956.39 5416.85 60199.97
S&C-RGG+ 2.58 16.25 89.02 445.76 3818.27 39353.15

Problem size/number of instances – 11 TSPLIB problems
1000/4 3162/3 10000/2 31623/1 100000/1

Algorithm CPU CPU CPU CPU CPU

LK–JM 0.29 0.54 3.61 14.57 35.90
LK–N 0.41 1.08 10.26 47.09 –
LK–ABCC 0.10 0.29 1.22 3.48 8.84
LK–ACR 0.08 0.23 0.74 1.74 5.42
S&C-RGG 7.59 26.47 134.99 665.85 3253.16
S&C-RGG+ 4.14 21.67 78.11 505.99 1461.85

C. Rego et al. / European Journal of Operational Research 211 (2011) 427–441 433
search possible without consuming excessively large amounts of
computation time, these two latter procedures use special and
highly sophisticated candidate lists as previously noted.

In order to assess the potential effect of using restricted
neighborhood search of the type employed by the don’t-look-bits
strategy considered in the LK implementations, we report results
for a first attempt to incorporate this technique in the S&C
algorithm. In the tables, S&C-RGG+ refers to the version of the
S&C algorithm that adds restricted neighborhood search to
S&C-RGG.

Table 3
Helsgaun & NYYY – solution quality.

Problem size/number of instances – 24 uniformly distributed problems
1000/10 3162/5 10000/3 31623/2 100000/2 316228/1 1000000/1 Total

Algorithm % NBS % NBS % NBS % NBS % NBS % NBS % NBS Average NBS

LK–H 0.16 10 0.19 5 0.83 3 0.83 2 – – – – – – 0.50 20
LK–NYYY 0.73 – 0.74 – 1.57 – 1.48 – 1.48 2 1.53 1 1.49 1 1.29 4

Problem size/number of instances – 23 clustered problems
1000/10 3162/5 10000/3 31623/2 100000/2 316228/1 Total

Algorithm % NBS % NBS % NBS % NBS % NBS % NBS Average NBS

LK–H 0.71 8 1.38 4 3.32 1 3.58 1 – – – – 2.25 14
LK–NYYY 1.22 2 2.18 1 3.08 2 3.45 1 3.51 2 3.49 1 2.82 9

Problem size/number of instances – 11 TSPLIB problems
1000/4 3162/3 10000/2 31623/1 100000/1 Total

Algorithm % NBS % NBS % NBS % NBS % NBS Average NBS

LK–H 0.24 4 0.15 3 0.24 2 0.46 1 0.85 1 0.39 11
LK–NYYY 1.15 – 0.86 – 0.72 – 0.99 – 1.03 – 0.95 0

Table 4
Helsgaun & NYYY – computational time.

Problem size/number of instances – 24 uniformly distributed problems
1000/10 3162/5 10000/3 31623/2 100000/2 316228/1 1000000/1

Algorithm CPU CPU CPU CPU CPU CPU CPU

LK–H 5.64 71.49 861.71 7819.27
LK–NYYY 0.16 0.57 1.76 4.97 20.86 84.73 507.62

Problem size/number of instances – 23 clustered problems
1000/10 3162/5 10000/3 31623/2 100000/2 316228/1

Algorithm CPU CPU CPU CPU CPU CPU

LK–H 6.93 70.28 768.31 12812.46
LK–NYYY 0.50 1.36 3.96 9.68 38.81 147.20

Problem size/number of instances – 11 TSPLIB problems
1000/4 3162/3 10000/2 31623/1 100000/1

Algorithm CPU CPU CPU CPU CPU

LK–H 7.82 73.32 1063.13 7982.09 48173.84
LK–NYYY 0.26 0.66 1.96 5.09 13.06

434 C. Rego et al. / European Journal of Operational Research 211 (2011) 427–441
Tables 1 and 2 disclose that the S&C approach is better than all
other implementations for generating high quality solutions. Figs. 4
and 5 provide a graphical visualization of the results summarized
in Tables 1 and 2, respectively. Note that besides achieving better
solution quality on average, both S&C variants find a significantly
larger number of best solutions across all problems and tables, at
the expense of longer running times.1

The graphics in Fig. 6 show the effect of the don’t-look-bits
strategy on the S&C algorithm, showing solution quality in Table 1
and computation times in Table 2. We see that even a straightfor-
ward implementation of the don’t-look-bits candidate list strategy
yield appreciable reductions in the running times for the S&C algo-
rithm without sacrificing the solution quality. In some cases the
quality of the solutions is even better when restricting the neigh-
borhood, suggesting that more elaborate implementations of the
1 There is a lesson here for those who create TSP implementations. As disclosed by
later timing tests, the increased time required by the S&C implementation was largely
due to an unsophisticated implementation of the don’t-look-bits strategy, coupled
with a failure to factor the sparsity of the list into the design of the data structure. In
short, the difference between a ‘‘straightforward” and a carefully designed imple-
mentation – even of a supporting routine – can spell big differences for run times in
the TSP setting.
don’t-look-bits strategy can have a dual effect on the performance
of the S&C by simultaneously improving the efficiency and effec-
tiveness of the algorithm. For the uniformly distributed problems,
the variant of the S&C algorithm that makes use of don’t-look-bits
(S&C-RGG+) performs better than its counterpart (S&C-RGG), in
three out of the seven problems in this group, while performing
comparably on the remaining problems. Also as illustrated in the
graphics of Fig. 6, the running times with the don’t-look-bits strat-
egy grow sublinearly with the problem size while these times grow
much more rapidly in the absence of this strategy. A similar advan-
tage should be expected for clustered problems, as occurred in the
case of the LK implementations; hence this topic invites special
attention in future developments.

We conjecture that additional improvements can be made by
using more effective neighbor lists that restrict the neighborhood
size without omitting arcs that may be critical to perform poten-
tially good moves. A neighbor list that is not designed with utmost
care can prevent the best solutions from being found by failing to
include some of the arcs in this solution, and can also cause the
search to take much longer to find these solutions when arcs are
not made accessible at the appropriate time. These observations
raise the possibility that some of the more advanced forms of can-
didate list constructions and strategies that abound in tabu search
proposals may prove useful in the TSP setting.

0.50

1.00

1.50

2.00

2.50

3.00

1000/10 3162/5 10000/3 31623/2 100000/2 316228/1 1000000/13000000/1%
 o

ve
r o

pt
im

al
 o

r H
el

d
&

 K
ar

p
lo

w
er

 b
ou

nd

Uniformly Distributed Problems

Comparing TSP Algorithms - Solution Quality

S&C-RGG+ LK-JM LK-N LK-ABCC LK-ACR

0.50

1.50

2.50

3.50

4.50

5.50

6.50

1000/10 3162/5 10000/3 31623/2 100000/2 316228/1%
 o

ve
r o

pt
im

al
 o

r H
el

d
&

 K
ar

p
lo

w
er

 b
ou

nd

Clustered Problems

Comparing TSP Algorithms - Solution Quality

S&C-RGG+ LK-JM LK-N LK-ABCC LK-ACR

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

1000/10 3162/5 10000/3 31623/2 100000/2%
 o

ve
r o

pt
im

al
 o

r H
el

d
&

 K
ar

p
lo

w
er

 b
ou

nd

TSPLIBProblems

Comparing TSP Algorithms - Solution Quality

S&C-RGG+ LK-JM LK-N LK-ABCC LK-ACR

Fig. 4. Basic LK and S&C (values from Table 1).

C. Rego et al. / European Journal of Operational Research 211 (2011) 427–441 435
Finally, the consideration of sophisticated techniques like
caching of distances and other implementation tricks that proved
efficient in LK implementations can likewise be incorporated in
the S&C algorithm. (For details on these techniques, we refer to
Johnson and McGeoch [19].)
The tables also suggest that LK–JM has some advantages in
application to the clustered instances. Tables 3 and 4 show that
LK–H achieves higher solution quality but with very heavy compu-
tational times. This high computational burden is a serious draw-
back by limiting the size of the problems the method can

0

0.005

0.01

0.015

0.02

0.025

1000/10 3162/5 10000/3 31623/2

(T
im

e
in

 S
ec

on
ds

) /
 n

Problems under 100,000 nodes

Comparing TSP Algorithms -Computational Times

S&C-RGG+ LK-JM LK-N LK-ABCC LK-ACR

Fig. 5. Basic LK and S&C (values from Table 2).

436 C. Rego et al. / European Journal of Operational Research 211 (2011) 427–441
address. LK–NYYY obtains reasonably good results in this group of
algorithms and is able to report solutions to all instances.

We now examine a new development that may hold promise
for better implementations.

3.4. Advances in data structures for large STSPs

The problem of data representation is fundamental to the effi-
ciency of search algorithms for the TSP and particularly important
for large STSP instances. The nature of these algorithms necessi-
tates the execution of certain basic tour operations involving sub-
path reversal and traversal. The computational effort that must be
devoted to these operations becomes increasingly pronounced
with larger problem instances. For example, if the tour is repre-
sented as an array (or doubly linked list) of nodes, a subpath rever-
sal takes time O(n), where n is the problem size.

A new data structure called the k-level satellite tree [28] has
recently been developed for the purpose of minimizing the contri-
bution of tour management toward the overall runtime cost of a
given search.

The 2-level tree [9] has for many years been considered the
most practical choice for representing the tour, yielding a worst-
case cost of Oð

ffiffiffi

n
p
Þ for tour operations. The idea is to divide the tour

into roughly
ffiffiffi

n
p

segments, where each segment is maintained as a
doubly linked list and the segments are connected in a doubly
linked list.

The k-level satellite tree takes the segmentation idea a step fur-
ther: the tour is divided into segments containing roughly n1/k

nodes each, and the resulting segments are grouped into parent
segments containing about n1/k segments each. Ultimately, k � 1
groupings are performed, giving the tree k levels with at least n1/k

parents on the top level. The leveraging effect achieved by this
grouping of nodes into segments is the same as that achieved by
the 2-level tree, except that we no longer assume that ‘‘2” is always
the appropriate number of levels.

The 2-level tree representation reduces the time complexity of
move operations at the price of incurring slightly larger constant
costs, also called overhead. As one might guess choosing higher val-
ues for k (making the tree ‘‘taller”) will further reduce complexity
while driving up overhead. It turns out that when these costs are
balanced, the best value for k increases logarithmically with n,
but only approximately, since k must be integer. A related property
is that, in most cases, the ideal size of a segment will remain the
same as problem size increases. This relationship can be shown
algebraically under the assumption that a given algorithm will
splice the tree during moves about as often as it will traverse par-
ents. Therefore, the key to choosing k is discovering the ideal seg-
ment size. This value, however, varies depending on the design and
tuning of a given algorithm, and therefore must be determined
experimentally.

The satellite design [28,29] makes it possible to defray some of
the overhead associated with introducing additional levels. A satel-
lite list is similar to a doubly linked list but has the advantage of
being symmetric in that an orientation is not inherent. If this struc-
ture replaces the doubly linked lists of the traditional 2-level tree,
many of the query operations required in the course of a given
algorithm may be performed more quickly. This benefit becomes
more pronounced when the tree is expanded to include more than
two levels.

The best value for k for a k-level satellite tree can be calculated
according to the size of the instance and the ideal segment size,
which is unique to each algorithm implementation. Hence experi-
mentation to establish best k values as a function of instance size
and segment size would be a useful contribution.

Recent experiments show the k-level satellite tree representa-
tion to be far more efficient than its predecessors. Particularly out-
standing reductions in algorithm running times occur with large
problem instances. When the tree is created with k chosen opti-
mally in comparison to k = 2, the average running time reduction
balloons from a modest 7% for 1000 node problems to 27% for
10,000 node problems and to 71% for 100,000 node problems.
For these tests, a S&C algorithm implemented with the k-level
satellite tree was run on Euclidean instances from the DIMACS
Challenge [21].

Fortunately, leading ejection chain algorithms for the TSP are
similar enough that they may all make use of the same data struc-
tures. Consequently, the improvement offered by the k-level satel-
lite tree may be shared as a common advantage in the same way
that the 2-level tree has been incorporated in multiple
implementations.

4. Asymmetric TSP

4.1. Ejection chain based algorithms

The Kanellakis–Papadimitriou (KP) heuristic [22] (based on the
LK procedure) was the only local search ejection chain algorithm
for the ATSP submitted to the ‘‘8th DIMACS Implementation
Challenge” as reported by Johnson and McGeoch in the Challenge
summary chapter [18]. The other two algorithms presented here

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1000/10 3162/5 10000/3 31623/2 100000/2 316228/1 1000000/1

(T
im

e
in

 S
ec

on
ds

) /
 n

Uniformly Distributed Problems

Comparing S&C Algorithms - Computational Times

S&C-RGG S&C-RGG+

0

0.5

1

1.5

2

1000/10 3162/5 10000/3 31623/2 100000/2 316228/1 1000000/1%
 o

ve
r o

pt
im

al
 o

r H
el

d
&

 K
ar

p
lo

w
er

 b
ou

nd

Uniformly Distributed Problems

Comparing S&C Algorithms - Solution Quality

S&C-RGG S&C-RGG+

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

1000/10 3162/5 10000/3 31623/2 100000/2 316228/1

(T
im

e
in

 S
ec

on
ds

) /
 n

Clustered Problems

Comparing S&C Algorithms - Computational Times

S&C-RGG S&C-RGG+

0

0.5

1

1.5

2

2.5

3

3.5

4

1000/10 3162/5 10000/3 31623/2 100000/2 316228/1%
 o

ve
r o

pt
im

al
 o

r H
el

d
&

 K
ar

p
lo

w
er

 b
ou

nd

Clustered Problems

Comparing S&C Algorithms - Solution Quality

S&C-RGG S&C-RGG+

0.00

0.01

0.01

0.02

0.02

0.03

0.03

0.04

1000/10 3162/5 10000/3 31623/2 100000/2

(T
im

e
in

 S
ec

on
ds

) /
 n

TSPLIB Problems

Comparing S&C Algorithms - Computational Times

S&C-RGG S&C-RGG+

0

0.5

1

1.5

2

1000/10 3162/5 10000/3 31623/2 100000/2%
 o

ve
r o

pt
im

al
 o

r H
el

d
&

 K
ar

p
lo

w
er

 b
ou

nd

TSPLIB Problems

Comparing S&C Algorithms - Solution Quality

S&C-RGG S&C-RGG+

Fig. 6. The effect of don’t-look-bits strategy on the S&C algorithm.

C. Rego et al. / European Journal of Operational Research 211 (2011) 427–441 437
were not submitted to the Challenge. These are the ATSP version of
the S&C algorithm and a new approach for the ATSP using the dou-
bly-rooted stem-and-cycle reference structure [14].

4.1.1. Kanellakis–Papadimitriou heuristic (KP-JM)
Lin and Kernighan were not concerned with the ATSP when

they developed their TSP heuristic in 1973 [23]. LK is based on
2-opt moves which always imply segment reversals that entail
exceedingly high computational effort, and hence this method
can not be directly applied to the ATSP. A variant of the LK ap-
proach presented by Kanellakis and Papadimitriou in 1980 [22]
solved this problem by using segment reordering instead of seg-
ment reversals (creating and breaking cycles so that the resulting
sequence corresponds to a sequence of 3-opt moves). The KP meth-
od starts with a variable-depth search based on LK but where the
moves performed correspond to k-opt moves for odd values of
k P 3. When the variable-depth search fails to improve the solu-
tion, the method searches for an improving double-bridge move
(with no reversals). Then KP returns to variable-depth search and
iterates in this manner until neither of the searches improves the
tour. Fig. 7 depicts a 3-opt and a 5-opt move that could be created
from the same initial tour. Diagrams A and B of Fig. 7 show the
ejection moves involved in a 3-opt move while diagrams C to F
are for the 5-opt move. For convenience of illustration we select
different nodes to create the initial structures in diagrams A and
C for the 3-opt and 5-opt moves, respectively. In both cases the
ejection chain starts by selecting a base node t1 and a node t3 that
identify the arcs (t1, t2) and (t3, t4) to be dropped and the arc (t3, t2)
to be added, where t4 is the endpoint of the path from t1 to t4. The
result is a disconnected subpath and cycle structure. A 3-opt move
is obtained by linking t4 to a node t5 in the cycle and deleting one of
its adjacent arcs. This rule is the same as that used to create the
3-opt move for the STSP, as illustrated in Fig. 1; however in the
case of the ATSP only arcs that preserve the current tour orienta-
tion are chosen, thus leaving only one option for the selection of
adjacent arc that breaks the cycle in the ATSP as opposed to two

Fig. 7. Possible Lin–Kernighan (KP) ejection chain moves for ATSP.

Bicycle Tricycle

r1

r2

r1

r2

Fig. 8. The doubly-rooted S&C reference structure.

Table 5

438 C. Rego et al. / European Journal of Operational Research 211 (2011) 427–441
possible edges in the STSP setting. In the example of Fig. 7, once arc
(t5, t4) is added and (t5, t6) is deleted, a 3-opt move is obtained using
a standard LK close up move, which adds arc (t1, t6). The 5-opt
move operates similarly, except that instead of immediately break-
ing the current cycle, it first creates another cycle around the cur-
rent path and disconnects the cycle from path, and then breaks the
two cycles in order. In the example, the first and second structures
are as shown in diagrams C and D of Fig. 7. Then, the first and sec-
ond cycles are broken as shown in diagrams E and F. Finally, node
t1 is linked to the other end of the current Hamiltonian path to
close up the tour – in the example, t1 is linked to t10 (formerly
t5), thus adding arc (t1, t10) to form a 5-opt exchange move.

The KP algorithm implementation analyzed in this paper is due
to Johnson and McGeoch and described in Cirasella et al. [8]. It
takes advantage of the same speedup techniques used in the
authors’ LK implementation [19], including neighbor lists and the
don’t-look-bits candidate list strategy. It also uses the dynamic
programming approach introduced by Glover [15] to find the best
double-bridge 4-opt move in O(n2) time. It also allows for tempo-
rary decreases in the net gains of ejection (add-drop) moves along
the chain.
Solution quality.

Problem size/number of instances – 28 TSPLIB problems
100/16 300/5 500/7 Total

Algorithm % NBS % NBS % NBS Average NBS

KP–JM 2.08 8j– 0.52 5j– 1.23 7j4 1.28 20j4
S&C-RGG 1.81 7 1.21 – 2.44 – 1.82 7
DRS&C-RGG 0.29 14 0.02 4 1.11 3 0.47 21
4.1.2. Rego, Glover, and Gamboa stem-and-cycle (S&C-RGG)
This algorithm is based on the S&C ejection chain algorithm for

the STSP (S&C-RGG) presented above but ignores moves that gen-
erate path reversals. This implementation does not use candidate
lists to reduce the neighborhood size, thereby penalizing the com-
putation times as discussed in the following subsection.
Table 6
Computational time.

Problem size/number of instances – 28 TSPLIB problems
100/16 300/5 500/7

Algorithm CPU CPU CPU

KP-JM 5.73 6.33 72.44
S&C-RGG 2.47 60.64 275.79
DRS&C-RGG 50.50 54.46 1785.10
4.1.3. Rego, Glover, and Gamboa doubly-rooted S&C (DRS&C-RGG)
The main distinguishing feature of this approach is its use of the

doubly-rooted stem-and-cycle reference structure characterized in
Glover [14], which generalizes the S&C structure by allowing for
additional moves on each level of the ejection chain. The doubly-
rooted structure has two forms: a bicycle in which the roots are
connected by a single path, joining two cycles, and a tricycle in
which the two roots are connected by three paths, thereby gener-
ating three cycles (see Fig. 8 where r1 and r2 indicate the roots).
Ejection moves consist of adding a new edge (vs,vj) where vs

is a subroot and deleting the edge (vs,vr) resulting in node vj as

C. Rego et al. / European Journal of Operational Research 211 (2011) 427–441 439
the new root. The trial moves correspond to those made avail-
able from each stem-and-cycle structure obtained by removing
one edge linking one root to one of the subroots. Due to the
symmetric relationship between the resulting structures, dupli-
cated moves can be eliminated by testing around one of the
roots. This leaves us with four trial solutions in the bicycle struc-
ture and six trial solutions in the tricycle structure for the STSP.
For the ATSP wherein arcs orientation must be preserved the
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1 2 3 4 5 6 7 8%
 o

ve
r o

pt
im

al
 o

r H
el

d
&

 K
ar

p
lo

w
er

 b
ou

nd

Problems S

Comparing ATSP Algori
KP-JM S&C-

0.00

1.00

2.00

3.00

4.00

1 2%
 o

ve
r o

pt
im

al
 o

r H
el

d
&

 K
ar

p
lo

w
er

 b
ou

nd

Problems S

Comparing ATSP Algori
KP-JM S&C-

0.00

1.00

2.00

3.00

4.00

1 2 3

%
 o

ve
r o

pt
im

al
 o

r H
el

d
&

 K
ar

p
lo

w
er

 b
ou

nd

Problems Siz

Comparing ATSP Algori
KP-JM S&C-

Fig. 9. Comparison of ATSP alg
number of possible trial solutions is reduced to one for the bicy-
cle and two for the tricycle structure.

In order to assess the effectiveness of the doubly-rooted S&C
neighborhood structure compared to the KP variant, we have
adopted for our implementation a similar strategy that alternates
between the ejection chain search and the 4-opt double-bridge
neighborhood. All the implementations use Nearest Neighbor
starting tours.
9 10 11 12 13 14 15 16

ize: 100 < n < 300

thms - Solution Quality
RGG DRS&C-RGG

3 4 5

ize: 300 < n < 500

thms - Solution Quality
RGG DRS&C-RGG

4 5 6 7

e: 500 < n <= 1001

thms - Solution Quality
RGG DRS&C-RGG

orithms: Solution quality.

440 C. Rego et al. / European Journal of Operational Research 211 (2011) 427–441
4.2. Comparative analysis of performance

Tables 1 and 2 summarize the results of the aforementioned
algorithms on all the TSP Library [35] asymmetric instances of size
ranging from at least 100 to slightly over 1000 nodes. The tables
are organized similarly to those presented in Section 3.3 for the
symmetric instances. Problems are grouped by size and the xjy
notation is used to indicate that the associated algorithm found x
better solutions than S&C-RGG and y better solutions than
DRS&C-RGG in the corresponding group of problems. The remain-
ing values are averages of percentage gap above the best known
solutions (%), the number of instances one algorithm outperforms
the others (NBS) when compared individually with either
S&C-RGG or DRS&C-RGG, and averages of computational times
(in seconds). The values in bold indicate the best averages.

Since our ATSP experiments were not conducted on the same
computer considered for the above STSP results (and reported in
the Challenge), it is important to explicitly identify the machines
used to carry out the tests. The S&C-RGG and DRS&C-RGG algo-
rithms were run on an Intel Centrino 1.5 GHz processor with
128 MB of memory. The results for the KP-JM algorithm were ob-
tained on the TSP Challenge reference machine, a Silicon Graphics
Power Challenge with 31 196 MHz MIPS R10000 processors, 1 MB
2nd level caches and 7.6 GB of main memory shared by all proces-
sors. To be consistent with the analysis reported for the STSP, we
provide normalized running times derived from runs of the stan-
dard benchmark code available in the Challenge website [21]. We
note that the benchmark code used here corresponds to an imple-
mentation of the ‘‘Hungarian method”, and is different from the
Greedy (or Multi-Fragment) geometric benchmark code used
above in the normalizations of STSP algorithms. As suggested in
[18] such a specialized method for the solution of linear assign-
ment problems is more likely to reflect the pattern of ATSP compu-
tations. We encountered relative factors of 1.000, 1.476 and 2.3429
for n = 100, 316 and 1000, respectively; hence we found 1.6 a rea-
sonable compromise for the actual factors of the two machines.

It is important also to mention that S&C-RGG and DRS&C-RGG
results were obtained in a single run of the algorithms with fixed
parameters. By contrast, results for the KP-JM algorithm are aver-
ages over at least five runs for each instance as reported in [8]. Also,
the S&C-RGG procedure corresponds to a version of the S&C
method created by removing features from its STSP version that
do not apply to the ATSP, and no effort has been undertaken to cre-
ate a specialized S&C variant for asymmetric instances to take
advantage of the principles that gave rise to the KP variant of the
LK method. Similarly, our 4-opt search used in the current DRS&C
0.00

1.00

2.00

3.00

4.00

5.00

1 2 3 4 5 6 7 8 9 10 11 12 13

(T
im

e
in

 S
ec

on
ds

) /
 n

Problems Si

Comparing ATSP Algori
KP-JM S&C-

Fig. 10. Comparison of ATSP algo
implementation corresponds to the procedure having a potential
O(n4) complexity that was considered in the original KP algorithm
[22], as opposed to Glover’s efficient O(n2) procedure used in its re-
cent KP implementations [8] analyzed here.

From Table 5 we can infer that the S&C-RGG algorithm obtains
competitive results but the DRS&C-RGG approach is clearly more
effective in producing high quality solutions. Note that besides
achieving better solution quality on average, DRS&C-RGG finds a
significantly larger number of best solutions across all groups of
problems. For the 100-node instances, KP–JM is unable to find even
one solution better than DRS&C-RGG, and can only match the best
solution found by DRS&C-RGG in two instances out of the 16 in the
group. Similar results are observed for the 300-node instances, but
for the largest instances of at least 500 nodes KP-JM seems more
competitive. Over all the 28 instances tested KP-JM can only find
four better solutions than DRS&C-RGG and match on three. The
overall percentage deviation average is also considerably better
for the doubly-rooted S&C approach, although the computational
times are higher as shown in Table 6. The results on the 28
instances of the complete testbed are displayed in the graphics of
Figs. 9 and 10.

5. Concluding remarks

The most effective and efficient local search ejection chain algo-
rithms for the TSP, which are examined in this paper, concern six
variants of the Lin–Kernighan (LK) approach and two variants of
the stem-and-cycle (S&C) ejection chain method for symmetric
TSPs, in addition to three generalizations of these methods for
the asymmetric version of the problem. We find that the S&C
approaches clearly outperform the basic LK implementations in
terms of solution quality, although using longer running times to
achieve the best solutions.

For symmetric instances, the S&C approach finds better solu-
tions than all (four) of the leading LK variants for about 70% of
the problems tested. Conspicuously, the 70% advantage of the
S&C approach refers to a comparison with the most effective vari-
ant of the LK procedure. The second best variant of this approach is
dominated by the S&C approach in approximately 97% of the prob-
lems. Some other variants failed to find even a single solution bet-
ter than the S&C approach over all 59 problems tested.

Similar success was achieved by our doubly-rooted S&C variant
applied to the asymmetric setting of the problem. Tests on 28 stan-
dard instances revealed 21 best solutions for our doubly-rooted
S&C algorithm as opposed to 4 best solutions obtained by a special-
ized LK variant for these asymmetric instances.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ze: 100 < n <= 1001

thms -Computational Times
RGG DRS&C-RGG

rithms: Computation times.

C. Rego et al. / European Journal of Operational Research 211 (2011) 427–441 441
We conjecture that gains in performance from the more ad-
vanced ejection chain methods result from the fact that they
embrace k-opt moves for k P 4 that are not accessible to the LK
approaches. The S&C-based ejection chain methods not only per-
form better than the local search TSP algorithms based on the LK
framework, but also give the overall best solutions when the local
search algorithms described here are used as engines for iterated
local search heuristics. We anticipate that future gains will result
by introducing more effective candidate lists that narrow the
neighborhood size without causing solution quality to deteriorate.
The advantages of the doubly-rooted S&C method over the single
rooted method within the asymmetric TSP setting also raise the
possibility that a variant of the doubly-rooted S&C approach will
prove highly effective in the symmetric TSP setting as well.

References

[1] D. Applegate, R. Bixby, V. Chvátal, W. Cook, Concorde: a code for solving
Traveling Salesman Problems, 1999. <http://www.math.princeton.edu/tsp/
concorde.html>.

[2] D. Applegate, R. Bixby, V. Chvátal, W. Cook, Finding tours in TSP, Research
Institute for Discrete Mathematics, Universitat Bonn, Bonn, Germany, 99885,
1999.

[3] D. Applegate, W. Cook, A. Rohe, Chained Lin–Kernighan for large traveling
salesman problems, INFORMS Journal on Computing 15 (2003) 82–92.

[4] J.L. Bentley, Fast algorithms for geometric traveling salesman problems, ORSA
Journal on Computing 4 (1992) 347–411.

[5] P. Briggs, L. Torczon, An efficient implementation for sparse sets, ACM Letters
on Programming Languages and Systems 2 (1993) 59–69.

[6] N. Christofides, S. Eilon, Algorithms for large-scale traveling salesman
problems, Operations Research Quarterly 23 (1972) 511–518.

[7] M. Chrobak, T. Szymacha, A. Krawczyk, A data structure useful for finding
Hamiltonian cycles, Theoretical Computer Science 71 (1990) 419–424.

[8] J. Cirasella, D.S. Johnson, L.A. McGeoch, W. Zhang, The asymmetric traveling
salesman problem: algorithms, instance generators and tests, in: Proceedings
of the Algorithm Engineering and Experimentation, Third International
Workshop, ALENEX 2001, 2001, pp. 32–59.

[9] M.L. Fredman, D.S. Johnson, L.A. McGeoch, G. Ostheimer, Data structures for
traveling salesman, Journal of Algorithms 18 (1995) 432–479.

[10] B. Funke, T. Grünert, S. Irnich, A note on single alternating cycle neighborhoods
for the TSP, Journal of Heuristics 11 (2005) 135–146.

[11] D. Gamboa, C. Rego, F. Glover, Data structures and ejection chains for solving
large-scale traveling salesman problems, European Journal of Operational
Research 160 (2005) 154–171.

[12] D. Gamboa, C. Rego, F. Glover, Implementation analysis of efficient heuristic
algorithms for the traveling salesman problem, Computers and Operations
Research 33 (2006) 1154–1172.

[13] F. Glover, New ejection chain and alternating path methods for traveling
salesman problems, Computer Science and Operations Research (1992) 449–
509.
[14] F. Glover, Ejection chains, reference structures and alternating path methods
for traveling salesman problems, Discrete Applied Mathematics 65 (1996)
223–253.

[15] F. Glover, Finding a best traveling salesman 4-opt move in the same time as a
best 2-opt move, Journal of Heuristics 2 (1996) 169–179.

[16] D. Harel, R.E. Tarjan, Fast algorithms for finding nearest common ancestors,
SIAM Journal on Computing 13 (1984) 338–355.

[17] K. Helsgaun, An effective implementation of the Lin–Kernighan traveling
salesman heuristic, European Journal of Operational Research 126 (2000) 106–
130.

[18] D.S. Johnson, G. Gutin, L.A. McGeoch, A. Yeo, W. Zhang, A. Zverovitch,
Experimental analysis of heuristics for the ATSP, in: G. Gutin, A. Punnen
(Eds.), The Traveling Salesman Problem and Its Variations, Kluwer Academic
Publishers, Boston, 2002, pp. 445–487.

[19] D.S. Johnson, L.A. McGeoch, The traveling salesman problem: a case study in
local optimization, in: E.H.L. Aarts, J.K. Lenstra (Eds.), Local Search in
Combinatorial Optimization, John Wiley and Sons, Ltd., 1997, pp. 215–310.

[20] D.S. Johnson, L.A. McGeoch, Experimental analysis of heuristics for the STSP,
in: G. Gutin, A. Punnen (Eds.), The Traveling Salesman Problem and Its
Variations, Kluwer Academic Publishers, Boston, 2002, pp. 369–443.

[21] D.S. Johnson, L.A. McGeoch, F. Glover, C. Rego, 8th DIMACS Implementation
Challenge: The Traveling Salesman Problem, 2000. <http://
www.research.att.com/�dsj/chtsp/>.

[22] P.C. Kanellakis, C.H. Papadimitriou, Local search for the asymmetric traveling
salesman problem, Operations Research 28 (1980) 1086–1099.

[23] S. Lin, B. Kernighan, An effective heuristic algorithm for the traveling salesman
problem, Operations Research 21 (1973) 498–516.

[24] O.C. Martin, S.W. Otto, E.W. Felten, Large-step Markov chains for the traveling
salesman problem, Complex Systems 5 (1991) 299–326.

[25] O.C. Martin, S.W. Otto, E.W. Felten, Large-step Markov chains for the TSP
incorporating local search heuristics, Operations Research Letters 11 (1992)
219–224.

[26] D.L. Miller, J.F. Pekny, A staged primal–dual algorithm for perfect B-matching
with edge capacities, ORSA Journal on Computing 7 (1995) 298–320.

[27] D. Neto, Efficient Cluster Compensation for Lin–Kernighan Heuristics,
Department of Computer Science, University of Toronto, 1999.

[28] C. Osterman, C. Rego, The Satellite List and New Data Structures for Symmetric
Traveling Salesman Problems, University of Mississippi, HCES-03-06, 2004.

[29] C. Osterman, C. Rego, D. Gamboa, The satellite list: a reversible doubly-linked
list, in: Proceedings of the 7th International Conference on Adaptive and
Natural Computing Algorithms (ICANNGA 2005), Coimbra, Portugal, 2005, pp.
542–546.

[30] E. Pesch, Learning in Automated Manufacturing: A Local Search Approach
(Production and Logistics), Physica-Verlag HD, 1994.

[31] E. Pesch, F. Glover, TSP ejection chains, Discrete Applied Mathematics 76
(1997) 165–181.

[32] C. Rego, Relaxed tours and path ejections for the traveling salesman problem,
European Journal of Operational Research 106 (1998) 522–538.

[33] C. Rego, F. Glover, Local search and metaheuristics, in: G. Gutin, A. Punnen
(Eds.), The Traveling Salesman Problem and Its Variations, Kluwer Academic
Publishers, Dordrecht, 2002, pp. 309–368.

[34] C. Rego, F. Glover, Ejection chain and filter-and-fan methods in combinatorial
optimization, Annals of Operations Research 175 (2010) 77–105.

[35] G. Reinelt, TSPLIB – a traveling salesman problem library, ORSA Journal on
Computing 3 (1991) 376–384.

http://www.math.princeton.edu/tsp/concorde.html
http://www.math.princeton.edu/tsp/concorde.html
http://www.research.att.com/~dsj/chtsp/
http://www.research.att.com/~dsj/chtsp/
http://www.research.att.com/~dsj/chtsp/

	Traveling salesman problem heuristics: Leading methods, implementations and latest advances
	Introduction
	Ejection chain fundamentals
	Graph theory representation
	TSP ejection chains

	Symmetric TSP
	The LK method and its variants
	Johnson and McGeoch Lin–Kernighan (LK–JM)
	Neto’s Lin–Kernighan (LK–N)
	Applegate, Bixby, Chvatal, and Cook Lin–Kernighan (LK–ABCC)
	Applegate, Cook and Rohe Lin–Kernighan (LK–ACR)
	Helsgaun’s Lin–Kernighan variant (LK–H)
	Nguyen, Yoshihara, Yamamori and Yasunaga Lin–Kernighan variant (LK–NYYY)

	Stem-and-cycle implementations
	Rego, Glover and Gamboa stem-and-cycle (S&C-RGG)

	Comparative analysis of performance
	Advances in data structures for large STSPs

	Asymmetric TSP
	Ejection chain based algorithms
	Kanellakis–Papadimitriou heuristic (KP-JM)
	Rego, Glover, and Gamboa stem-and-cycle (S&C-RGG)
	Rego, Glover, and Gamboa doubly-rooted S&C (DRS&C-RGG)

	Comparative analysis of performance

	Concluding remarks
	References

